Liquidity Guided Machine Learning: The Case of the Volatility Risk Premium
Abstract
The financial industry has eagerly adopted machine learning algorithms to improve on traditional predictive models. In this paper we caution against blindly applying such techniques. We compare forecasting ability of machine learning methods in evaluating future payoffs on synthetic variance swaps. Standard machine learning methods tend to identify contracts which are illiquid, and hard to trade. The most successful strategies turn out to be those where we pair machine learning with institutional and market/traders inputs and insights. We show that liquidity guided pre-selection of inputs to machine learning results in trading strategies with improved pay-offs to the writers of variance swap contract replicating portfolio.