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Abstract

Blockchain-based decentralized exchanges are a pre-requisite and the backbone

of decentralized finance. They fall into two broad categories: decentralized limit order

books where an order is a smart contract registered on the blockchain, and swap ex-

changes where prices are set by a deterministic automated market making rule. The

most common form of the latter is the constant product rule where relative prices of

crypto assets are determined by iso-liquidity curves. Although this pricing rule is simple,

its use is conceptually problematic and gives rise to persistent arbitrage opportunities

when there are multiple competing trading systems. It also allows intrinsically profitable

front-running opportunities. A traditional market maker pricing rule, on the other hand,

does not suffer from these flaws. Calibrated to a less liquid but frequently used trading

pair on UniSwap, 14% of transactions see an implicit theoretical excess cost of at least

50bps, which is orders of magnitude larger than the common trading costs for this pair

on centralized exchanges.
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Permissionless blockchains such as Ethereum are a technological infrastructure that

allows “decentralized” digital resource transfers, a possibly disruptive threat to the tra-

ditional world of finance. Yet in its first 5 years of existence, the Ethereum blockchain

barely made a dent to legacy finance. Moreover, most of the transfers of the tril-

lion dollars worth of blockchain assets occurred, somewhat ironically, on centralized,

“off-chain” exchanges. Using these is risky: not only are these intermediaries largely

unregulated, users also have to transfer custody of their tokens to the exchange and

are then exposed to the risk of hacking or outright theft.1

Things changed, however, in the summer of 2020 with the arrival of decentralized

swap exchanges such as UniSwap, SushiSwap, or Balancer. By now these venues pro-

cess more trading volume than many prominent centralized exchanges, including the

recently IPO-ed Coinbase, with a core algorithm of just over 200 lines of code.

What sets swap exchanges apart and makes them interesting is their underlying

organization. Traditional financial markets rely on limit order books or on networks of

market makers that investors access through various intermediaries and that require

several separate systems to sync. In contrast, using a swap exchange is a three-click

process: Traders connect their browser crypto-wallet to the swap exchange app, enter

desired the amount, sign the transaction with their wallet, and the trade gets executed

on the Ethereum blockchain. Functional simplicity aside, the economically relevant

promise and possible genius of decentralized swap exchanges is that they use the smart

contracts functionality of the blockchain to aggregate and automate the provision of

1Examples are the Mt. Gox hack, the mysterious death of QuadrigaX’s founder Gerald Cotton, and
the outright theft by the founder of crypto-exchange Thodex. There are blockchain based exchanges,
but these commonly simply copy traditional limit order market with their high message volumes, and
that makes them cumbersome, expensive, and resource intensive to use; an example is EtherDelta.
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liquidity. Liquidity providers deposit and pool their assets in a swap exchange smart

contract which then allows others to trade against this aggregate set of assets. Liquidity

providers receive a fee in return, while retaining their exposure to the underlying assets.

There is a problem, however. All of the swap exchanges use a particular hard-

coded function to determine the price for accessing the liquidity of this contract, and

this pricing function is economically flawed. In this paper, I outline how this func-

tion intrinsically creates disincentives and arbitrage opportunities that impose excess

costs on users and liquidity providers. However, I also provide a remedy in the form

of a pricing approach that is based on a canonical market making model from the

microstructure literature that overcomes all these issues.

The first mention of decentralized market making is in a 2016 Reddit post by

Ethereum’s Vitalik Buterin. Martin Koppelmann of the Gnosis project later expands

on this idea and proposes a constant product automated market making (henceforth:

CPAMM) pricing scheme. All swap exchanges to date all use variations of this pricing

scheme. Namely, under CPAMM, liquidity for a pair of tokens A and B is arranged via

a smart contract into which liquidity providers deposit X units of tokens A and Y units

of tokens B. The ratio Y/X is the implicit marginal price of an A token measured in B

tokens. Very commonly, one of the tokens, say B, is a U.S. dollar-pegged stablecoin,

i.e., a token that has a price of approximately one dollar; examples are Tether/USDT,

USDC, and DAI. Using a stablecoin as the unit of measurement, the exchange rate

Y/X is the dollar-price for an infinitesimal amount of A tokens. Pricing for non-zero

quantities is such that the contract keeps liquidity invariant at a level X × Y = c for

some constant c. This means that if someone wants to buy x of the A tokens, she has
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to pay with y of the B tokens where y is such that c = (X − x) × (Y − y). In the

language of economics, tokens are priced along an iso-liquidity curve (points of same

level of liquidity).

The first fundamental problem arises because of the operation of blockchain settle-

ment which creates the possibility of front-running. After a contract submits a swap

trade, it sits in the so-called mempool of authenticated but not settled transactions

and awaits settlement, i.e., the inclusion in a new block by a miner.2 Crucially, the

trade price is determined by the CPAMM formula and it is driven by the number the

tokens that are in the contract at the time of settlement — not at the time when the

trade was submitted. Any user with access to the mempool can now do the following:

submit the same trade but with a higher mining fee (so that the trade will have higher

priority of getting included in the next block) and then submit a second trade with a

lower fee to close or reverse the position.

The possibility of this front-running is a feature of most blockchains. Although it

is annoying for an investor, front-running is only a concern if the pricing algorithm

makes it intrinsically profitable. The first main point of this paper is that this is

always the case for CPAMM pricing.3 I then show that there is another way: with a

pricing function that follows a canonical market maker model from the financial market

microstructure literature (Biais (1993)), mempool front-running is never profitable.

2The concern that I describe in this paper applies whenever transactions are visible to anyone prior
to settlement, and when the order of inclusion in a block is not according to a timestamp. This is the
case for most proof-of-work blockchains such as Ethereum or Conflux, and likely also applies to many
proof-of-stake blockchains.

3I am by no means the first to highlight this problem — see, e.g., Vitalik Buterin’s post here. Some
protocols limit the “slippage,” but this does not eliminate the arbitrage problem. My contribution is
to show that the functional form of pricing that arises from a canonical economic model would not
suffer from this deficiency. Angeris and Chitra (2021) formalizes the concept as “path deficiency.”
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Mempool front-running is not a hypothetical problem — bots scan and exploit profit

opportunities in practice as Daian, Goldfeder, Kell, Li, Zhao, Bentov, Breidenbach, and

Juels (2019) outline in great detail. In fact, some of the entities that are well-known

for their high-frequency arbitrage activities in regular financial markets, such as Jump

Trading, are also highly active in the DeFi space. Move broadly, CPAMM arbitrage

profits are a form of so-called Miner Extractable Value (MEV) (see Section I.). The

presence of such profit opportunities is associated with so-called high frequency priority

gas auctions (PGAs) that have raised the costs of transactions on Ethereum dramati-

cally over the last half year (coincidentally, since the introduction of decentralized swap

exchanges in 2020) — a very clear case of a negative externality.

The second fundamental problem arises from the organization of liquidity. Consider

a scenario with two identical swap exchanges. An investor should always take advantage

of all available liquidity to reduce the cost of trading and split her order between the

venues. However, suppose she does not. Then the price dislocation after a trade on

one venue gives rise to a profitable trading opportunity, which comes at the expense of

the liquidity providers. Namely, for any number x of tokens A bought on one venue,

an arbitrageur can sell 0 < x̃ < x on that venue, buy the amount on other venue,

and earn a positive profit. Over-trading on one venue thus gives rise to “ping-pong”

trading where arbitrageurs trade back and forth among the two venues. By point of

contrast, this arbitrage opportunity does not arise with canonical pricing.

In the last part of the paper I discuss how mining (and trading) fees can somewhat

mitigate both undesirable features of constant-product pricing because they reduce

arbitrage profits, but the problem persists in particular for orders that are large enough
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and for contracts that are no sufficiently liquid. To establish some empirical stylized

facts, I examine a small dataset from UniSwap. For very liquid contracts, the loss for

investors from CPAMM pricing relative to canonical pricing is negligible. For less liquid

trading pairs, however, the loss is substantial: for the trading of “wrapped” Bitcoin to

USDT, in January 2021, more than 10% of investors stood to lose (theoretically) 53

bps or more of their trade size by using a swap exchanges such as UniSwap compared

to the canonical pricing scheme.4

Decentralized finance is still a young field, despite the overall value that already

circulates in the system. There are now several studies that explore the relationship of

trading when there is both a CPAMM swap exchange and a centralized exchange. Par-

lour and Lehar (2021) describe the returns to liquidity provision and contrast CPAMM

to limit order book trading. Aoyagi and Ito (2021) study the interaction of trad-

ing and prices when centralized and decentralized swap exchanges co-exist in a model

of asymmetric information. Capponi and Jia (2021) focus on the complications that

arise for liquidity providers of automated, constant product swap exchanges when the

underlying token value, determined by prices on centralized venues, is volatile.

The contribution of my work is to highlight that the currently used CPAMM pricing

approach is conceptually flawed because it creates intrinsic arbitrage and front-running

opportunities. In practice, it is clear the current pricing approach creates negative

externalities. However, the development in DeFi is fast-paced, projects are often short-

lived, and the field is fluid. Since the field is, arguably, still at an experimental stage,

it is imaginable (and desirable) that swap exchanges update their pricing approach in

4A side product of the calibration exercise is that I show how the various model parameters from
the canonical Biais-model translate into the arguably more straightforward CPAMM formulation.
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the future to remedy the current shortcomings.

I. The Trading of Blockchain Tokens

Prior to the summer of 2020, most crypto-tokens that had been issued on the

various decentralized platforms could only be traded on so-called centralized venues

such as Polionex, Binance, Kraken, Coinbase, or the now defunct QuadrigaX. These

transactions were usually trades of crytocurrencies such as Bitcoin and Ether, the

cryptocurrency of the Ethereum network, in exchange for either fiat currencies or other

tokens that represented fiat currencies, so called “stablecoins” such as Tether. To

trade, users have to register with the platform and transfer their blockchain asset to

the “wallet” of an exchange, before they can use the exchange’s system to make their

trades. The implication is that as part of the process, custody of the asset moves from

the user to the exchange. This arrangement is risky, as demonstrated by the numerous

hacking and fraud incidents such as Mt. Gox, QuadrigaX, or Thodex. Moreover, it is

almost comical that the blockchain community needed to rely on centralized exchanges

for the trading of its decentralized tokens.

Blockchain based trading, however, has always been possible — after all, a limit

order, the standard way to trade securities, is nothing but a simple contingent (smart)

contract. And decentralized limit order books have indeed been around, e.g. EtherDelta.5

5The presence of these venues raises interesting legal questions. Formally, the contracts are a feature
of the blockchain and they are available to interact with for anyone who has access to the internet. It
is therefore not clear whether any jurisdiction has power of this functionality. Of course, the world of
equity trading is highly regulated, and there are many rules of how a trading system can and cannot
be operated. In practice, the websites that users access to trade on the decentralized exchange are
operated by individuals or businesses. This allowed the S.E.C. to charge the founder of EtherDelta with
operating an illegal national securities exchange. See: https://www.sec.gov/news/press-release/2018-
258 Simply put: regulators have very little power over the operation of a blockchain, but they can
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The idea of these decentralized “venues” is simple. Trades are always exchanges of two

blockchain tokens, and so user simply have to register their limit orders as a smart

contract on the blockchain, “locking” the token that can be sold subject to someone

sending the desired amount of the other token to the contract. When that happens,

the contract initiates an atomic swamp: the buyer receives the bought tokens and the

seller receives the payment tokens. This atomic swap is processed by the blockchain

miners and happens “in one go” so that there are never any failures to deliver — the

trade is the settlement. A decentralized exchange (DEX) simply provides users with an

interface to enter and sign orders using the cryptographic capabilities of their existing

blockchain wallet. Moreover, the system keeps track of these orders (using information

from the blockchain, not its own system) and displays available orders on a website.

Although such a mechanism is workable, it relies on individuals to continuously

monitor and re-submit orders to supply liquidity; the required monitoring is a costly

activity. Moreover, liquidity provision would also involve the perpetual submission of

new liquidity providing orders, a process that absorbs computational power and thus

mining fees.6 Most importantly, this approach does not use much of the billions of

value in aggregate capital that crypto-asset owners hold, very much in contrast to the

legacy financial world where assets are used whenever possible.

This is where so called swap exchanges come in. A swap exchange is a smart contract

that holds deposits of pairs of token from numerous liquidity providers.7 Liquidity

exert power over people who are involved with blockchain projects.
6This is in contrast to most centralized exchanges or today’s stock exchanges, where order submis-

sions are usually free. The exception is Canada where users have to pay a nominal, sub-penny fee for
every order that they submit; see Malinova, Park, and Riordan (2013). There are systems that keep
the limit order book offline and only execute the trades on-chair.

7Balancer is more general and can hold portfolios of more than two tokens. If a particular pair
is not available as a separate contract, some swap exchanges such as SushiSwap offer cross-contract
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seekers then interact with this pool of liquidity and offer to add one type of tokens to

this contract in exchange for the other part of the pair. The contract then determines

the exchanged quantity based on a mechanical rule. Importantly, liquidity providers

do not provide a priced contract, they can be entirely passive. These contracts involve

just over 200 lines of code (in the meta-languages Reach it’s about 20 lines).

The price of the swap, however, is only implicit in the sense that it may change at

any time until the trade settles on the blockchain (i.e., gets processed by a miner who

adds it to a block).8 As I outlined in the introduction, this creates a problem because of

the way that public blockchains are organized. The possibility of front-running is a fact

of the organization of public blockchains because verified but non-settled transactions

need to wait for inclusion in a new block in publicly visible “mem-pools.” As Figure 1

illustrates, this allows a front-runner to send an identical transaction to the contract

albeit with a higher mining fee. Such a transaction would receive a higher execution

priority, thus enabling front-running.9

Miner Extractable Value. The problem of front-running in the CPAMM setup

has been recognised as early as March 2018. Daian, Goldfeder, Kell, Li, Zhao, Bentov,

trading. For instance, suppose someone whats to trade USDC for USDT but there is no such contract.
If, however, there is a contract for ETH and USDT and ETH and USDC, then the system would
arranage a swap from USDC to USDT by trading USDC→ETH→USDT.

8Users can specify a maximum “slippage” or price impact that they’d accept.
9Within the DefI community, this type of front-running is often likened to the activities of so-called

high-frequency traders (HFTs) on traditional stock exchanges. One of the most prominent activities of
these HFTs is the “speed game” which refers to the practice of reducing the latency between different
trading venues with ultra-fast data lines and having fast access to the central matching engine of
the venues though co-location, i.e., physically placing their servers as closely as possible to the server
of the matching engine. The purpose is to be able to react to market movements or new pieces of
information as quickly as possible. Formally, however, in stock exchanges these HFTs cannot front-
run a trade in the same way as in public blockchains because HFTs would not know about a trade
of other traders until it appears on the tape — at which point it is, for all practical purposes, final.
Although often brought up, this analogy is, therefore, inaccurate. That being said, known HFTs from
equity and futures markets are active in DeFi markets; see Jump Trading’s podcast.
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Breidenbach, and Juels (2019)10 describe the high-frequency mining fee auctions that

often occur when front-running bot identify profitable transactions, including (but not

only) CPAMM trades. UniSwap alone, however, usually accounts for a very large

fraction of the gas (aka computational cycles) of the Ethereum blockchain.11 For

instance, the blog post Ethereum is a Dark Forest12 describes a case where the authors

identified a smart contract vulnerability. They tried to remedy the problem by moving

funds out of the contract, but a bot identified their transaction, outbid them, and

extracted the value. The overall background is that automated arbitrage bots scan the

mempool for profitable, not-yet-settled transactions. If a bot spots such a transaction

—including the arbitrage opportunities that I describe in this piece— it submits an

identical transaction with higher fees to outbid the original one. If other bots do the

same, a so-called priority gas auction ensues. Miners can thus extract revenue from

profitable transactions (Miner Extractable Value, MEV) either by earning higher fees

or by submitting the transaction themselves. A Paradigm Research blog post by Noyes

(2021) describes this issue in more detail and estimates that in December 2020, realized

MEV amounted to about $120M per day; the author states that UniSwap arbitrage

is the most common form, though the data source and data generating process is not

clear from the post.

There are a number of projects that try to remedy this issue; Aune, O’Hara, and

Slama (2017), for instance, propose a technique to guarantee time priority in private

blockchains.

10See also the Flashbot Project.
11Running data is available at ETH Gas Station; UniSwap’s V2’s main contract address is

0x7a250d5630b4cf539739df2c5dacb4c659f2488d.
12“Dark Forest” refers to an environment, described in a SciFi book by Cixin Liu of the same title,

in which detection means certain death at the hands of advanced predators.
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II. Market Making Models and Pricing

A. Overview of Standard Market Making Models

The main model in the finance literature on market microstructure is the Kyle

(1985) model in which a single insider has perfect knowledge of the fundamental value

of an asset. This insider (together with some “noise” traders) trades with a market

maker an must take into account how his trades will affect the price. The Kyle model

explicitly assumes that the market maker is subject to perfect competition and in the

model, this results in linear price and demand functions. The most common approach

to pricing in this type of model is to assume a competitive market for liquidity provision

such that prices coincide with the fundamental value of the underlying security, subject

to the information revealed should a trade take place at the given price. This model,

however, assumes that there are information asymmetries (i.e., that there are insiders

who genuinely know the fundamental value of an asset).

There are also models of limit order pricing where traders decide between submitting

market and limit orders. The driving forces in these models, e.g., Parlour (1998), is

the execution risk of limit orders, or the risk that the fundamental value changes so

that one’s limit order becomes stale, e.g. Foucault (1999) or, more recently, Budish,

Cramton, and Shim (2013).

In this paper, I want to avoid the complications associated with asymmetric in-

formation. Limit order models are not of interest for this paper either, because swap

exchanges are not limit order markets.

The most applicable class of models to compare to swap exchanges, in my opinion,
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are those that assume that market maker prices are driven by inventory risk: when

accepting a trade, liquidity providers need to absorb a risky inventory, and prices are

set to compensate liquidity providers for their risk. Prominent models in this literature

originate from Huang and Stoll (1997), and I use a variation of Biais (1993), which is

a very tractable version with prices that are linear in quantities.

B. Market Making with Inventory Risk

The model that I develop in this section is in the tradition of Biais (1993): an

investor wants to trade quantity x of token A and receive (or make a payment in)

token B. For simplicity, I assume that token A is a risky security and security B is

riskless (i.e., it a nummeraire such as cash).13

We assume here that the risky token A has a fundamental value that is normally

distributed with mean V and variance σ2. Information regarding the distribution of

the fundamental value is public knowledge. The asset is infinitely divisible.

All trades go through a group of N intermediaries, who require compensation in

exchange for taking a risky inventory in token A. Namely, we assume that the in-

termediaries are risk averse and have negative exponential utility of wealth w (which

displays constant absolute risk aversion (CARA)) with risk aversion coefficient κ > 0,

and inventory of A tokens Ii, with
∑

i Ii =: X. With CARA utility intermediaries have

utility of terminal wealth u(w) = −e−κw, where w = −(v − p)xi + Ii · v and v denotes

the value of an A token measured in B tokens, xi is the quantity of A tokens that they

sold at price p.

13If both tokens would be risky, e.g., users would trade Bitcoin against ETH, then we would measure
each against a riskless asset.
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In its simplest version, all tokens trade at a single price. The underlying assumption

is that a trader would arrive at the market once and makes a single trade.14 Some of

the ideas that I will discuss below, however, have an implicitly dynamic flavor in the

sense that we worry about subsequent trades. I will assume here instead that market

makers post a pricing function p(·) and that when purchasing quantity x, investors

pay
∫ x
0
p(t)dt. As I will show below, a linear pricing function is an equilibrium, and

therefore the total cost function is quadratic. With a uniform price and a linear price

function, investors would have an incentive to split their trades into infinitesimal orders

sizes and trade “along” the price curve; this would allow them to reduce the total cost

by half compared to trading the whole quantity in one go.15

For simplicity we assume that the supply of the riskless token B is ubiquitous, i.e.,

that intermediaries can borrow these tokens at an interest rate of 0. Intermediaries

observe orders submitted to them, respond with a supply schedule that maximizes

their utility, and then markets clear. Namely, they each specify for each price p of an

A token measured in the B token, how many tokens they are willing to buy (or sell)

∀p ∈ R xi(·) : p→ xi(p). Markets clear at a uniform price such that
∑N

i=1 xi(p) = x.

Lemma 1 (Equilibrium price in Standard Market Making): To buy x units of token A

from the N intermediaries investors pay a marginal price

p(x, I) = V +
2κσ2

N
(x− I). (1)

14One way to think about this is that there is an implicit assumption that traders are not anonymous
so that market makers can detect repeated trading accept trades only at prices that reflect the full
size of an order.

15See van Kervel, Kwan, and Westerholm (2020) for a model where order splitting across time is
intrinsically beneficial, even in the absence of asymmetric information.
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We then define parameter ` := κσ2; it signifies the liquidity or the price impact cost

in this intermediated market. This pricing formula is, in principle, entirely mechanical

and can be programmed as a smart contract (subject to sufficient availability of B

tokens in the contract).

Proof. Intermediaries choose quantities xi given price p, to maximize their expected

utility, maxxi EU [−vxi(p) +
∫ xi
0
p(t)dt + Ii × v]. For CARA-normal frameworks, this

task reduces to maximizing the certainty equivalent:

max
xi

[Ii × V − (V xi −
∫ xi

0

p(t)dt]− κ

2
σ2[−xi + Ii]

2,

where V denotes the expected value of the asset. The maximization problem results

in the following first order condition:

V − p(xi)− κσ2 × Ii + κσ2xi = 0.

Solving for xi yields the (inverse) demand schedule

xi(p) = −V − p
κσ2

+ Ii.

The market clearing condition
N∑
i=1

xi(p) = x

13



implies, substituting for xi, and simplifying, that

N∑
i=1

(
−V − p

κσ2
+ Ii

)
= x

which we solve for p to be

⇔ p(I, x) = V +
κσ2

N
(−I + x), (2)

where I denotes the combined inventory of the intermediaries: I =
∑N

i=1 Ii.

Price changes in this model occur for two reasons: changes in the fundamental

value V , and trades which require intermediaries to absorb a risky inventory. When

an investor approaches the intermediaries who hold total inventory I in order to buy x

units, and the investor pays, in abuse of notation, the total cost for buying x is

ptmm(x, I) :=

∫ x

0

V +
`

N
(t− I) dt = x

(
V − `

N
I

)
+

`

2N
x2,

where I use superscript tmm to signify a “tradtional” market maker pricing approach.

Although the marginal price is linear, costs are convex functions of the quantity.

C. Constant Product Automated Market Makers

In a constant product market maker pricing model (CPAMM), liquidity providers

make deposits for a trading pair of tokens A and B in a smart contract. Specifically,

they provide aggregate quantities X units of tokens A and Y units of tokens B. Pricing

is such for any demand x ∈ (−∞, X], value y is such that (X−x)×(Y +y) = c for some
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constant c (and the reverse for y ∈ [−Y,∞)), and in particular XY = c. Therefore,

one can think of this exchange rate as the fundamental value of an A token measured

in B tokens. The direct implication is that the marginal price of an A token measured

in B tokens is Y/X, and the price pcmm(x) per unit when purchasing quantity x is y/x,

where I use superscript cmm to signify the CPAMM pricing schedule.

Lemma 2 (CPAMM Pricing): To trade x units of token A, an investor pays

y(x) = x× Y

X − x
:= pcmm(x,X, Y ). (3)

The proof is a merely algebraic rearrangement of the equation (X−x)×(Y +y) = c

and thus omitted. After the trade, the contract contains X − x units of token A, and

XY/(X − x) units of B.

III. Properties of the Pricing Functions

A. A Brief Comparison

The two pricing functions are obviously different: one is linear in token A demand x,

the other is convex (as the second derivative of the price function is positive). The cost

function for standard market making, however, is convex, too. For standard market

maker pricing, the liquidity factor ` and the number of market makers N determine the

slope of the linear function, the inventory I shifts the intercept, as does the true value

V . However, an inventory in the standard market maker model is always considered

to be costly whereas presumably some users agree to provide liquidity to use their

buy-and-hold assets while earning additional yield through lending out their securities
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(akin to mutual funds). In that sense, any inventory I should be seen as excess amount

of inventory beyond a target amount. To compare the two pricing functions, I set set

the target amount to X and thus I = 0 and assume that market makers deposit single

units of A tokens so that N = X.

Next, the constant product market maker model is not concerned with a “true”

value for the asset. To compare CPAMM and standard market making, bar any trading,

the implied marginal price forA tokens must coincide with the true value, i.e. V = Y/X.

Then Y = V X is the total cash amount that market makers contribute and the cash

amount is equivalent to the cash value of their inventory of A tokens.

The two price functions coincide for two values of x. One is x = 0, by construction.

The other is

x∗ =
X

`
(`− 2V ).

Figures 3 and 4 plots the two cost functions pcmm and ptmm for V = 1 and for various

values of X and ` as indicated in the respective plot legends.

Figure 3 provides a plot for the entire range of feasible values, Panel A in Figure 4

focuses on the subset of plot for which x∗ < 0, and Panel B in Figure 4 focuses on

the subset of plot for which x∗ > 0. Dotted lines are for pcmm, dashed lines are for

ptmm. Negative values of x signify a sale and the cost, therefore, indicates revenue

earned. The nature of the quadratic function cost function ptmm is such that for low

enough values of x, the investor still has to pay because the market makers require

compensation for the inventory risk that they take. For the CPAMM case, on the

other hand, in the limit for x → −∞, pcmm → −V X or pcmm → −Y , meaning that

the investor can at most extract all the cash that has been deposited by the liquidity
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providers. Likewise, as x→ X, the cost rises without bound.

The two cases highlight the different underlying ideas: for standard market mak-

ing, the cost of a buy increases quadratically, but there is no explicit limit and the

assumption is that market makers can provide or absorb any quantity of the desired

token. Likewise, they are willing to buy arbitrarily large quantities, but at some point,

they are no longer paying the seller, they require to be paid to accept further assets.

The CPAMM model, on the other hand puts no bounds on the quantities that can be

bought or sold, which is useful for smart contract automation.

The plots further highlights that the two cost functions intersect at x∗ and merely

touch at 0. Overall, the following result summarize the relationship of the two pricing

functions.

Proposition 1 (Comparison of Prices): For x > x∗, constant product pricing is worse

for investors, and for x < x∗ it is better.

Proof. With two points of intersection, there are two scenarios: x∗ < 0 and x∗ > 0.

• When x∗ < 0, then ∀x > x∗, ptmm(x) < pcmm(x), i.e., investors pay less in the

standard model for x > 0 and they receive more for x < 0. Furthermore, x < x∗,

ptmm(x) > pcmm(x) such that investors receive less in the standard model.

• When x∗ > 0, then for all values x ∈ (0, x∗), ptmm(x) > pcmm(x), which means

that CPAMM provides a “better” price for investors because investors receive a

higher price for their sales. For x > x∗, ptmm(x) < pcmm(x) and standard pricing

is better for investors. Finally, for x < 0, ptmm(x) > pcmm(x) which means that

investors receive less for what they sell in the standard model.
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This finding shows that from a pricing perspective it is not straightforward to order

the two pricing models, except for the knife edge case when X` = 2V . Generally, the

results are intuitive however: the more liquid the standard market is (` is small), the

larger is the region of prices for which standard pricing is better. Likewise, the more

liquidity investors are willing to provide for the CPAMM model (X is large), the larger

is the region of prices for which CPAMM prices are superior for investors. The values

X and `, however, have an intuitive, non-direct connection. Namely, we assume that

the starting inventory of market makers is I = 0 and that the market makers assess

inventory other than their “comfort zone” to be costly. When X is large, market

makers are willing to hold the A token, which presumably should also imply that ` is

small. In other words, X and ` should be negatively related in practice.

B. Desirable Properties of Pricing Functions

A first important property is additivity which implies that splitting an order into

two consecutively traded parts costs the same as sending an order of the same size “in

one go.” If this condition does not hold for a theoretical model, then the formulation

is potentially dynamically inconsistent. Moreover, in a blockchain world, this feature

would create excessive network usage without economic gain. In limit order markets,

for instance, additivity often does not hold automatically if the market adjusts quotes

after trades. In practice, traders commonly break large “parent” orders into many small

“child” orders to reduce costs, but such behavior is often driven by considerations other

than the pricing function.

Second, I ask whether front-running is intrinsically profitable. Namely, front-

running refers to a situation where a trader Alice sees the trading intention of another
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trader Bob, mimics Bob’s trade but acts before him, and then does an offsetting trade

to close her original position. Front-running is usually costly for the person who is

front-run, but it is not clear whether the possibility of front-running will always lead

to a positive probability of front-running. For that, it would have to be intrinsically

profitable. If that’s the case, then the underlying pricing function is highly undesirable

for a setting with a public blockchain. The reason is that in public blockchains it is

impossible to prevent front-running because orders are always visible in the mempools

prior to settlement.16 We consider only cases where the original amount x is less than

X/2, so that front-running is possible (for the total quantity bought would be 2x).

The next set of properties applies to situations when there are multiple trading

venues with the same pricing model. The first property relates to the splitting of

liquidity (e.g., because a new venue opens for business). The first question to ask is

whether liquidity is divisible, i.e., are trading costs the same when liquidity is con-

centrated on an existing system compared to it being split across two different ones?

Modern markets are often fragmented and it is important to understand whether the

pricing function itself generates an explicit benefit or cost when liquidity is fragmented

(beyond the obvious fact that splitting trades involves twice the miner fees).

The second question relates to (accidental) single-venue over-trading. Namely, when

liquidity is split across multiple venues, a trader should use all venues for a trade.17 In

practice, in the DeFi world there are order routing services such as 1inch and Paraswap

16This area is currently an active research field, the hope being, that cryptographic tools can be
used to mask trades in the mempool.

17Generally speaking if liquidity is divisible, then traders should split their trades between venues
in proportion to their liquidity. For simplicity I look at the case where the liquidity is the same on
two venues, so the trader should have traded half her volume on each venue.
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that perform this service and break up large orders across protocols.18 Suppose, how-

ever, that a trader doesn’t do this and instead uses only one of two identical venues (for

instance, because s/he is unsophisticated or impatient). This will move the price for

subsequent trades on one venue due while leaving the other unchanged. Multi-venue

arbitrage occurs when the selling of an amount larger than half of the last trade on the

first venue and buying it back on the other venue is intrinsically profitable.19

C. Properties of Standard Market Making Prices

Without loss of generality, in the proofs for standard pricing, we set V = 0 and

I = 0. All results are based on buys; a symmetric argument holds for sells. I use

ptmm(x, 0)|N→N ′ to signify the pricing when the N market makers are reduced to N ′ ≤

N market makers (e.g., because N is split between two parallel systems).

Proposition 2 (Properties of Standard MM Pricing):

For x ∈ (0, X), α ∈ (0, 1) and k > 0:

1. Non-Profitable Order Splitting: for α ∈ (0, 1): ptmm(αx, I) + ptmm((1 − α)x, I +

αx) = ptmm(x, I).

2. Unprofitable Front-running: −ptmm(x, I) + ptmm(−x, I + 2x) = 0.

3. Additivity with split liquidity, k · ptmm(x/k, I)|N→N/k = ptmm(x, I)|N→N .

4. No Multi-venue arbitrage: ∀α > 1/2, ptmm(−αx, I + x)− ptmm(αx, I) < 0.

18I thank Julien Prat for pointing out these services.
19Why more than half the original order? Effectively, the original trader over-traded with one venue.

Trading half the original amount as described would align liquidity on both venues to be as it should
have been had the original trader split the trade equally among the two venues.
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In the standard model, market makers intuitively price “along” the marginal price

curve. Splitting an order x into quantities αx and (1 − α)x, therefore, simply means

that after trading αx, the market maker accepts quantity (1− α)x at an inventory of

αx, or, in plain English, she continues to price where she left.20

Proof. of 1.: After selling αx to an investor, the inventory changes by −αx. Then,

ptmm(αx, I) + ptmm((1− α)x, I + αx) =

αx∫
0

(V + `(t− I))dt+

(1−α)x∫
0

(V + `(t− I + αx))dt

=

∫ x

0

×(V + `(t− I))dt.

Proof of 2.: As a front runner, the investor buys x, sees the other party buy x

from the market makers, and then sells x. Payoffs are the amount received from selling

minus the amount paid for buying. As before, without loss of generality, we set the

initial inventory to I = 0. The front runner pays ptmm(x, 0) for the initial position and

receives ptmm(−x, 2x) when liquidation (the inventory has increased by 2x from the

front-runner’s as well as from the front-run’s trade). Then

−ptmm(x, 0) + ptmm(−x, 2x) = −
∫ x

0

`tdt+

∫ x

0

`(−t+ 2t)dt

=

∫ x

0

`(−t(−t+ 2t)dt = 0.

Proof of 3.: Additivity with split liquidity follows directly from the market setup

because the model assumes a single market clearing price, and it is irrelevant where

20The standard Biais (1993) model has a single, uniform price, because the model makes the implicit
assumption that trading is not anonymous and that, therefore, market makers would detect such
behavior and refuse future trades.
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market makers are. Formally, note first, that when the N market makers are split into

k equal groups then ` = κσ2/N → κσ2/(N/k) = k · `. Therefore

k · ptmm(x/k, I)|N→N/k = k · `k
2

(x/k)2 =
`

2
x2

= ptmm(x, I)|N→N .

Proof of 4.: The result follows from straightforward algebra:

ptmm(−αx, x)− ptmm(αx, 0)

= αx
`

2
(−αx+ x)− αx`

2
αx =

`

2
α(1− 2α)x2.

The last expression is negative if α > 1/2.

D. Properties of Constant Product Automated Market Making Prices

As a next step, we examine the same relationships for constant product market

maker pricing. Recall that y(2x, ·, ·) signifies the amount of token B that one has to

pay for 2x many of the A tokens.

Proposition 3 (Properties of CPAMM Pricing):

For x ∈ (0, X), α ∈ (0, 1) and k > 0:

1. Additivity: pcmm(αx,X, Y )+pcmm((1−α)x,X−αx, Y+y(αx,X, Y )) = pcmm(x,X, Y ).

2. Profitable Front-running: −pcmm(x,X, Y ) + pcmm(−x,X − 2x, Y + y(2x)) > 0.

3. Additivity with split liquidity, pcmm(x,X, Y ) = k · pcmm(x/k,X/k, Y/k).
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4. Multi-venue arbitrage: pcmm(−αx,X − x, Y − y(x)) − pcmm(αx,X, Y ) > 0 ∀α ∈

(0, 1).

Proof. of 1.: Since y(x) = xY/(X − x), we have that after purchase of x, there are

XY/(X − x) of the type B tokens. Therefore

pcmm((1− α)x,X − αx, Y + y(αx)) =
(1− α)xXY

(X − αx)(X − x)
.

Together we get

pcmm(αx,X, Y ) + pcmm((1− α)x,X − αx, Y + y(αx))

=
αxY

X − αx
+

(1− α)xXY

(X − αx)(X − x)

=
xY (α(X − x) + (1− α)X)

(X − αx)(X − x)
=

xY

X − x
= pcmm(x,X, Y ).

Proof of 2.: The front runner pays y(x,X, Y ) and later sells x where there have

been two purchases of x each before (one by the front-runner, and one by the person

having been front-run). For selling x, the front runner then receives

y(−x,X − 2x, Y + y(2x)) =
xXY

(X − x)(X − 2x)
.

Then we simplify to get

y(−x,X − 2x, Y + y(2x))− y(x,X, Y ) =
2x2Y

(X − x)(X − 2x)
> 0. (4)
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Proof of 3.: We have

ky(x/k,X/k, Y/k) =
kx/kY/k

X/k − x/k
=

xY

X − x
= y(x,X, Y ).

Proof of 4.: After a trade of x on venue 1, an arbitrageur sells αx < x on venue 1

and buys αx on venue 2. The cost for this trade is

y(−αx,X − x, Y − y(x))− y(αx)

=
αxY

(X − αx)(X − (1− α)x)(X − x)

×
(
2X(X − x) + x2(1− α)

)
> 0.

The possibility of profitable front-running as well as multi-venue arbitrage (and

subsequent ping-pong trading) is therefore an intrinsic concern under the given pricing

model. This problem of front-running is indeed well-known, which is why all swap

trading venues include an option for traders to limit the “slippage”, i.e., when asking

to arrange a trade, traders can limit the price impact/change that their order will

face. As Proposition 2(2) shows, however, a different pricing system can eliminate this

problem altogether.
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IV. Impact of Trading Fees for CPAMM

A. Mining and Trading Fees

Trading Fees are best thought of as compensation for liquidity providers. The

slope of the pricing curve in the canonical pricing model is an exact representation

of the compensation that liquidity providers obtain for taking on risk under market

clearing. No other compensation is warranted in a competitive market.

For CPAMM pricing it is not clear whether the shape of the curve reflects “fair”

compensation for taking on risk. In fact, as I showed in the last section, assuming that

the liquidity providers are the same under both regimes, CPAMM pricing either over

or under-compensates liquidity providers for taking risk. In addition to the pricing

function, in practice CPAMM users also pay a fee to liquidity providers and so far

I have abstracted from this fee to simplify the exposition. However, the presence of

this fee makes trading more costly and this implies that there is an additional cost to

frontrunning and arbitrage trades. This fee therefore reduces the set of trades to which

Proposition 3 (2) and (4) apply, which means that no all trades create an arbitrage

opportunity, only sufficiently large ones do.

The same insight applies to mining fees: uses need to pay miners for each trans-

action so that it (or, rather the underlying code) gets executed on the blockchain.

Mining fees therefore also reduce the set of trades for which front-running and arbi-

trage is profitable. The difference between mining and trading fees is that the latter

are somewhat under the control of the trader herself. In the next subsection, I argue

how a trader can use fees “defensively” to prevent front-running (the formulation is
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conceptually agnostic as to whether these fees are mining or trading fees).

For this defense, however, there is a bigger question relating to the workings of

mining. Namely, the idea of a defensive fee is predicated on the idea that someone

would have to pay a fee to outbid the original trader and then pay a similar fee to

reverse the transaction. The implicit assumption is that this “someone” must pay the

miner. But what if the front-runner is the miner itself? Then that the defensive fees

are irrelevant because the miner can choose the order of transactions in the block and

put its own transactions ahead of the front-run trade without paying a fee. In other

words, mining fees cannot work as a defense against malicious miners.

Now, it is important to emphasize that even though the word suggests otherwise,

miners are not people! Mining follows an open-source algorithms,21 there is no secret

in what miners are doing, their actions are transparent and hard-coded, and they don’t

take decisions pondering each arbitrage case. If they are malicious, it would be plainly

visible (including the fact that their blockchain addresses are known). In principle, it

may be possible for a protocol to avoid broadcasting transactions to mempools that

are operated by malicious miners, though this is likely technologically tricky.

As I argue in this paper, there is an altogether better approach by using a pricing

function that doesn’t enable exploitative behavior in the first place.

B. Defensive Fees

Equation (4) specifies the front-running profits. These profits do not account for

the mining fees or other transaction fees. Clearly, to be successful, the front-runner

21See, for instance, this link for the part of the Parity mining protocol that describes the ordering
of transactions by fees.
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has to outbid the original trader for the mining fees and she has to pay mining fees

for the return transaction, too. The mining fees for the return transaction therefore

have to be high enough to ensure that the return trade gets included in the same block

(otherwise, the front-runner faces a possibly significant execution risk, because of 4.)

but not higher to ensure that the front-run trade gets accounted for first. By choose a

sufficiently high fee, the original traders can therefore make front-running unprofitable.

Proposition 4: For each quantity x there exists a mining fee f that the original trader

can submit to render front-running unprofitable; the fee is increasing in x.

Proof. If the original trader pays f , the front-runner will pay f + ε1 for the first leg

and f − ε2 for the return trip. For front-running to be profitable, equation (4) with

mining fees has to satisfy

2x2Y

(X − x)(X − 2x)
> 2f + (ε1 − ε2). (5)

For ε1, ε2 arbitrarily close to zero, there exists an f̄ such that for any mining fee f > f̄ ,

front running is unprofitable. Furthermore, the left hand side of (5) is obviously an

increasing function of x.

In other words, although front running is intrinsically profitable, when taking fees

into account, traders do not have to accept arbitrarily large prices because of the

possibility of front running. The left hand side of (5), however, is a convex function of

x and therefore for large quantities, “protective” fees increase more than proportionally.

A second source of fees are the explicit trading fees that the liquidity providers

receive. There is a subtle difference to transaction/mining fees in that these fees are
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usually proportional to the amount traded (in UniSwap V2, they were 30bps of the

transaction amount; the details differ between protocols). However, the principle is the

same: these fees can prevent front-running as they make each leg of the front-running

trade more expensive.

Fees have no impact on the “desirable” features for canonical pricing: there is still

no multi-venue arbitrage, and there is still no profitable front-running. The fees that

users would have to pay to avoid front running are, in fact, a clear example of Miner

Extractable Value (MEV) because the miners themselves could perform the front-

running. In economic terms, this type of MEV amounts to rent extraction which leads

to socially suboptimal outcomes.

V. A Simple Calibration Exercise

The analysis thus far has been abstract and it is unclear whether the problem that

I describe is empirically relevant. In this section, I establish a few stylized facts to link

the model to market data.

First, the standard market maker model requires a choice for the risk aversion

coefficient κ. Using a meta-analysis, Babcock, Choi, and Eli Feinerman (1993) (Table 1)

report that the CARA coefficient κ falls anywhere between .00001 and 0.5, where most

of the values in the literature are at the small end of the spectrum; in my subsequent

calibration, I will use κ = 0.0005.

Second, I will compare calibrated trading costs for three common trading pairs:

Bitcoin–USD, Ether-USD, and USDT-USDC, where the latter is the exchange rate of

two common stablecoins, USDT, issued by Tether Ltd., and USDC, issued by Coinbase
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Inc. Here, USD and USDC are the nummeraire tokens Y .

Table I lists the estimates that I use for the calibration. For the fundamental values

of these tokens V I will use the January 17, 2020 approximate prices of $36,000, $1,200,

and $1 for BTC, ETH, and USDT. To compute their standard deviations I collected

data from CoinDesk (for BTC and ETH) as well as Nomics for USDT-USDC for the

time from January 16, 2020 to January 16, 2021.

To determine the values X, the capital at risk, I use information on the liquidity

provision in UniSwap trading pairs, currently the most heavily used CPAMM protocol,

where I used either Tether’s USDT or Coinbase’s USDC as the baseline token Y , and

I use so-called wrapped Bitcoin wBTC as a proxy for Bitcoin. On January 17, 2021,

the liquidity provision contract for the USDT-ETH pair contained roughly 80K ETH,

the USDC-wBTC contained 120 wBTC, and the USDC-USDT contract contained 17M

USDT (and a similar amount of USDC). Therefore, the three contracts reflect medium,

high, and low liquidity as well as low, medium and high volatility.

For all these parameters, the value x∗ for which canonical and CPAMM costs co-

incide is negative (and quite large in absolute value). Therefore, for a very large set

of reasonable trade sizes, canonical pricing offers “better” terms to investors. Using

these figures, I then compute the excess trading costs as well as the mining fee in (5)

that investors have to submit to avoid being front-run. I compute these items for three

standard-sized trades of $1,000, $5,000, and $10,000.

Table I summarizes the amounts. For small trade sizes ($1,000) the excess cost

of CPAMM are, arguably, negligible. The same holds generally for the highly liquid

contract ETH-USD. However, for the less liquid contracts, costs can be substantial:
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Table I
Calibration of Costs and No-Arbitrage Fees

trade size USDC-USDT ETH-USD BTC-USD

value V 1 1.2K 36K
σ 0.01 220 6.6K
X 17M 80K 120
X in USD 17M 100M 4.3M
x∗ −3.4e15 -39.6M -1.9K

excess cost 1K 0.1 0.0 0.3
CPAMM 5K 1.5 0.4 6.4

10K 5.9 1.5 25.4

arbitrage 1K 0.1 0.0 0.3
prevention 5K 1.5 0.4 6.8
fee 10K 5.9 1.5 27.2

total in bps 1K 1.2 0.3 5.2
of transaction 5K 5.9 1.5 26.3
value 10K 11.8 3.0 52.6

trading $10,000 or more of wBTC-USD comes at a combined excess cost of 53 bps for

the trade — which is a large cost in the trading world. To put this into perspective,

for this type of highly traded pair, this is a massive cost: at a price of $30K, even a $1

bid ask spread is less than a basis point, and on most centralized markets, spreads are

smaller than $0.10.

Using the first 4,000 transactions on January 14 and thereafter from the UniSwap

contract Etherscan for the relevant wBTC-USDC pair, about 14% of transactions ex-

ceed $10K in value, and another 13% have transaction value between $5K and $10K.
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Although it is not clear whether these users have suffered from front-running, the pos-

sibility implies that they would have been better served with a standard market maker

pricing protocol.

VI. Discussion and Conclusion

Ad-hoc, exogenous pricing functions are unsatisfactory for economists, because such

prices are not market prices, even if they are driven by demand and supply. With such

pricing, it is unclear if prices will ever reflect demand and supply or aggregate infor-

mation, all of which are core functions of market prices.22 In standard trading models

from the financial market micro-structure literature, liquidity providers compete to

provide the best price. This assumption ties down how prices are determined, and in

this paper I present a variation of the standard Biais (1993) model, that demonstrates

that a pricing model that’s derived from primitives can display many desirable prop-

erties of pricing functions. In contrast, the ubiquitous constant product automated

market making function that most decentralized swap exchanges use is an economi-

cally arbitrary pricing function. I show here how it has theoretically highly undesirable

properties that matter in practice, at least for lower liquidity tokens (arguably, the part

of the market for which the pooling of liquidity has the most promise).

22Notably, Aoyagi (2020) develops a theoretical model of investor and liquidity provider behavior
around constant product pricing as an exogenous rule. In his model there are three main market
participants: noise traders, who trade for personal reasons; informed traders, who know the true
value of the underlying asset and who maximize their trading profits, taking account of the effect of
their trade on prices (as in Kyle (1985)); and liquidity providers who maximize their profits taking
into account the pricing rule and the behavior of the latter two types of traders. Aoyagi (2020) solves
the model in terms of traders and liquidity providers’ behavior and he shows that the scheme allows
liquidity providers to extract rents. Moreover, although users can infer the security’s fundamental
value from prices, the price usually not coincide with it.
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As for my results. There are two main differences between the market maker

models that I discuss in this paper. First, multi-venue arbitrage in the standard model

is limited to a smaller set of quantities. Normally, the second market that saw no

trade should adjust after the other market moved (and the initial trade should have

occurred on both venues). Reverting half of the original amount should generally be

profitable because the original trader would have essentially made a mistake. However,

for the CPAMM model, there is a much wider range of intrinsically profitable trading

opportunities.

Second and more importantly, front running in the CPAMM model is always prof-

itable whereas it is not in the standard market making model. This is a fundamental

and intrinsic problem in the CPAMM market maker model. Fees can mitigate to

problem, but each of these fee solutions make trading as a whole more expensive and

generate redistribution of income away from traders to miners. As Proposition 1 shows,

when there are sufficiently many liquidity providers that are not too risk averse, then

linear pricing is much cheaper for investors or, put differently, liquidity providers simply

receive too much, above-market compensation for the risks that they take.

These properties aside, there are other concerns that merit attention. For instance,

prices on a swap exchange do not exist in isolation because blockchain securities can

be traded on various venues. This implies that the price of the CPAMM is often

wrong relative to the broader market, unless liquidity suppliers constantly update

their quantities such that the marginal price is in line with what’s available elsewhere.

Capponi and Jia (2021) studies this issue extensively and they show how volatility

prices can lead to surges in transactions fees for the entire blockchain –yet another
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negative externality– as well as to liquidity freezes. All in all, although swap exchanges

have very desirable features, such as the pooling of liquidity, there are several major

concerns that need to be addressed for these systems to unfold their potential.
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Figure 1
Illustration of Front-Running in Blockchains

The possibility of front-running is an intrinsic feature of blockchains. The schematic works
as follows. A user who wants to perform a swap transaction submits the tokens she desires
to exchange to the constant product market making contract (1). The contract submits an
atomic swap to the blockchain network, and upon verification this transactions enters the
mem-pool (2). Verified transactions get ordered in a block based on the fees that they offer
(all else equal) (3). An attacker (likely a bot) observes the mempool and see a transaction
that can be front-run profitably (4). The bot sends two off-setting swap transactions to
the contract, when the front-running trade has a higher fee than the original, front-run
transaction (5). In the block, the transactions now get re-ordered according to their mining
fees and, upon inclusion on the chain, the transactions in the CPAMM contract get executed
in the order of the fees (6).
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Figure 3
Comparison of the Cost Functions ptmm and pcmm

Panel A: x∗ < 0 Panel B: x∗ > 0

Figure 4
Comparison of the Cost Functions for x∗ < 0 and x∗ > 0
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