Up Next

ki-logo-white
Market-Based Solutions to Vital Economic Issues

SEARCH

ki-logo-white
Market-Based Solutions to Vital Economic Issues
Research
May 23, 2017

Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?

Abstract

Prior studies attribute analysts’ forecast superiority over time-series forecasting models to their access to a large set of firm, industry, and macroeconomic information (an information advantage), which they use to update their forecasts on a daily, weekly or monthly basis (a timing advantage). This study leverages recently developed mixed data sampling (MIDAS) regression methods to synthesize a broad spectrum of high-frequency data to construct forecasts of firm-level earnings. We compare the accuracy of these forecasts to those of analysts at short horizons of one-quarter or less. We find that our MIDAS forecasts are more accurate and have forecast errors that are smaller than analysts’ when forecast dispersion is high and when the firm size is smaller. In addition, we find that combining our MIDAS forecasts with analysts’ forecasts systematically outperforms analysts alone, which indicates that our MIDAS models provide information orthogonal to analysts. Our results provide preliminary support for the potential to automate the process of forecasting firm-level earnings, or other accounting performance measures, on a high-frequency basis.

Note: Research papers posted on SSRN, including any findings, may differ from the final version chosen for publication in academic journals.


View Working Paper

You may also be interested in: